

A comprehensive computational tool for the analysis and design of systems requiring human interaction

Adolph Atencio, Jr.

US Army Aeroflightdynamics Directorate
Ames Research Center

Space Shuttle Development Conference Ames Research Center July 29, 1999

1

Introduction

- MIDAS Definition
 - MIDAS Structure
 - User interface
- Application to Space Shuttle Upgrades
- Payoff
- Summary

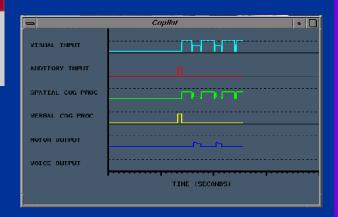

MIDAS Man-machine Integration Design and Analysis System

Goal: Develop a computer-aided engineering system for human factors analysis/design.

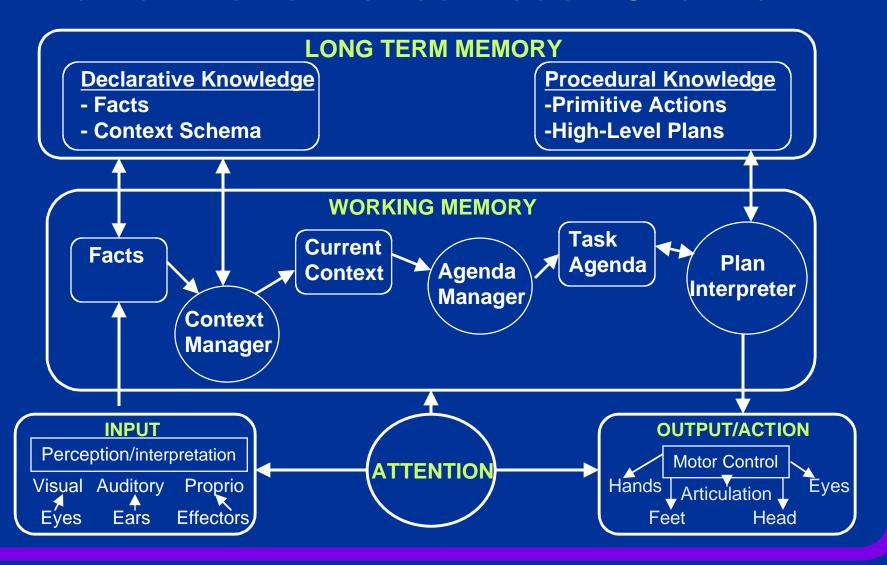
- Combine 3-D rapid prototyping methods,
- embedded human performance models, and
- advanced simulation techniques
- Simulate the human operator from perception to action
- Move crew station design/procedural iterations from hardware to software and reduce design cycle time.

MIDAS Research Station

Data Input


Off Line Human Factors Analysis

- Crewstation Designers
 - Human Factors Analysts
 - Cognitive Modelers


Run Time Visualization

Data Analysis

Human Performance Model: Overview

Analysis and Design

Simulation Requirements:

Sketch of simulation

Definition of accessed equipment (Functionality)

Scenario (Operator interaction, Events)

Data Requirements

MIDAS Interface:

Editors

Dynamic Simulation

Run Time Displays

MIDAS Output:

Operator Behavior, Workload, Timelines, Situation Awareness, ..., Data Analysis

Army/NASA Rotorcraft Division

User Interface

MIDAS Editors

- Model Definition
 - Environment, Crew Station, Vehicle
 - Operator

Physical (Anthropometry)

Sensory (Auditory and visual properties)

Knowledge (Initial declarative knowledge LTM)

Basic Procedures (Operator behavior)

Cognition (Operator's context)

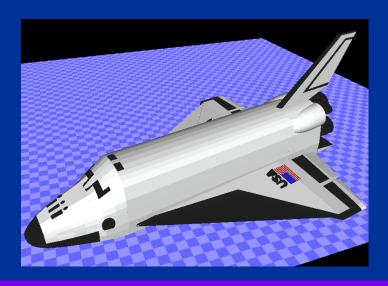
Configuration (Assemble Operator)

Simulation Setup

- Scenario (construct run tree, events, displays)

Army/NASA Rotorcraft Division

MIDAS Editors


Run Time Display

Space Shuttle Design Studies

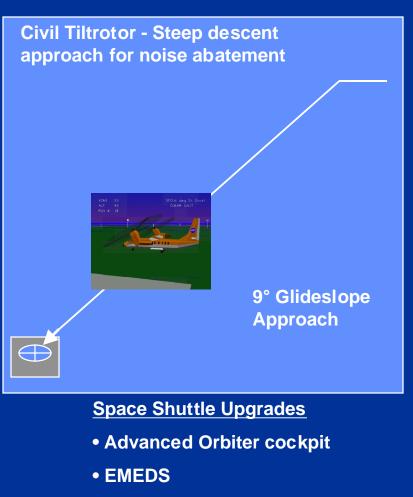
- Display Lay-out and Format Evaluations
- Procedures Development and Evaluation to Reduce Workload
- Communications Evaluation
- Assess Capability of Distributed Mission Control Center

Display Lay-out and Format Evaluations

Space Shuttle Upgrades

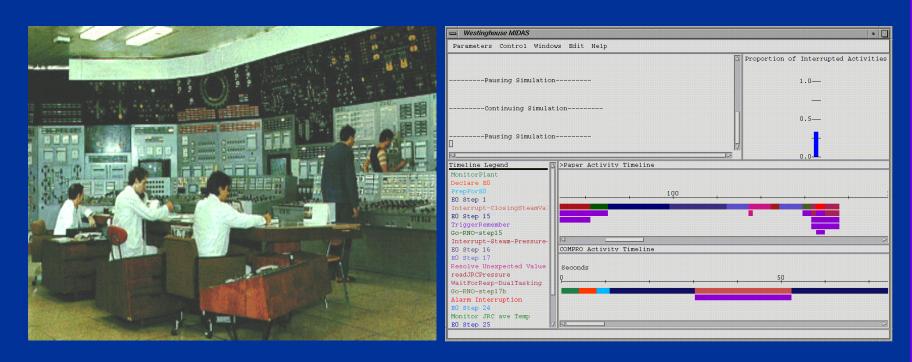
• Advanced Orbiter cockpit

- Display Lay-out and Format Evaluations
- Procedures Development and Evaluation to Reduce Workload


Space Shuttle Upgrades

- Advanced Orbiter cockpit
- EMEDS

- Procedures Development and Evaluation to Reduce Workload
- Communications Evaluation



Flight safety

- Assess Capability of Distributed Mission Control Center
- Communications Evaluation

Space Shuttle Upgrades

Distributed Mission Control Center

Payoff

- Support for Concept Development: What if?
- Full assessment of proposed concepts
- Performance, Workload and Situation
 Awareness Evaluation
- Reduced design cycle time and cost

Lower Cost

Summary

- MIDAS is a Mature Human Factors Tool
- Rapid Prototype Environment Dynamic Simulation - What If?
- Models Human From Perception to Action
- Beta Release
- Information:

www-midas.arc.nasa.gov

Demo Booth on site